Дозиметр-радиометр МКС-АТ1117М (Нейтронный дозиметр)

Исполнение 1

Cocmae:

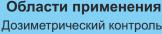
- Блок детектирования нейтронного излучения БДКН-03
- Блок обработки информации БОИ2
- Кабель
- Держатель (для крепления БОИ2 на БДКН-03)

Исполнение 2

Состав:

- Блок детектирования нейтронного излучения БДКН-03
- Блок обработки информации БОИ4
- Адаптер ВТ-DU4
- Кабель
- **Держатель** (для крепления ВТ-DU4 на БДКН-03)

Дозиметр-радиометр в таких исполнениях относится к переносным средствам измерения и предназначен для измерения мощности амбиентного эквивалента дозы и амбиентного эквивалента дозы нейтронного излучения, а также для одновременного контроля мощности амбиентного эквивалента дозы и амбиентного эквивалента дозы и амбиентного эквивалента дозы гамма-излучения. В качестве элемента управления и индикации используется блок обработки информации БОИ2 или БОИ4.


Алгоритм работы обеспечивает непрерывность процесса измерения и статистическую обработку результатов в режиме реального времени.

1) <u>Блок обработки информации БОИ2</u> (исполнение 1)

Информация с блока детектирования по кабелю поступает на БОИ2 и индицируется на жидкокристаллическом индикаторе.

В БОИ2 предусмотрена возможность записи и хранения в энергонезависимой памяти до 99 результатов измерений, а также передача их в персональный компьютер при помощи специального ПО.

При превышении пороговых уровней, значения которых могут быть изменены оператором, срабатывает звуковая, световая и визуальная сигнализация.

 Дозиметрический контроль на АЭС, промышленных предприятиях, в исследовательских лабораториях, медицинских учреждениях и др.

Особенности

- Быстрая адаптация к изменению уровней радиации
- Широкий энергетический диапазон
- Звуковая и визуальная сигнализация превышения пороговых уровней
- Самоконтроль работоспособности
- Возможность работы в жестких климатических условиях

2) <u>Блок обработки информации БОИ4</u> (исполнение 2) представляет собой карманный персональный компьютер (КПК) со встроенным узлом детектирования, обеспечивающем измерение дозы и мощности дозы гамма-излучения в месте нахождения оператора.

Передача информации с блока детектирования в БОИ4 может осуществляться:

- по Bluetooth через адаптер BT-DU4
- по кабелю при подключении напрямую к БОИ4

С помощью БОИ4 обеспечиваются следующие функции:

- обработка и индикация измерительной информации;
- GPS-привязка результатов измерения;
- автоматическая запись и хранение не менее 10000 результатов измерений с GPS-привязкой;
- звуковая световая и визуальная сигнализация превышения пороговых уровней;
- индикация степени заряда батарей БОИ4 и адаптера BT-DU4;
- возможность импорта данных на персональный компьютер для последующего анализа и обработки в экспертном прикладном ПО «GARM» (по заказу);
- возможность автоматической передачи данных на удаленный сервер при помощи ПО «ARMS» [через FTP-сервер и при наличии функции 3G в БОИ4 или возможности подключения к Wi-Fi сети] (по заказу).

Дозиметр-радиометр МКС-АТ1117М (Нейтронный дозиметр)

Основные характеристики

Блок детектирования	БДКН-03	
Вид регистрируемого излучения	нейтронное излучение	
Детектор	³ Не пропорциональный счетчик в полиэтиленовом замедлителе	
Диапазон энергий	0,025 эB – 14 МэB	
Диапазон измерения мощности амбиентного эквивалента дозы	0,1 мкЗв/ч — 10 мЗв/ч	
Диапазон измерения амбиентного эквивалента дозы	0,1 мкЗв — 10 Зв	
Чувствительность к нейтронному излучению Pu-Be источника (в режиме измерения мощности дозы)	0,355 (имп·с ⁻¹)/(мкЗв·ч ⁻¹)	
Диапазон измерения плотности потока нейтронного излучения	0,1 — 10⁴ нейтрон·с⁻¹-см⁻²	
Чувствительность к нейтронному излучению Pu-Be источника (в режиме измерения плотности потока)	0,5 (имп·с ⁻¹)/(нейтрон·с ⁻¹ ·см ⁻²)	
Предел основной относительной погрешности измерений	±20%	
Степень защиты	IP64	
Габпритные размеры, масса	314х220х264 мм, 8 кг	

Относительные коэффициенты чувствительности для типовых источников нейтронного излучения различных энергий при измерении мощности амбиентного эквивалента дозы

Источник n-излучения	овые, 0,225±0,045 Ве, 0,81±0,08 Сf, 13 МэВ 1,02±0,10 Ве, 1,02	
Тепловые, Ен=0,025 эВ		
Ra-Be, Ен=100 кэВ		
²⁵² Сf, Ен=2,13 МэВ		
Pu-Be, Ен=4,16 МэВ		

Относительные коэффициенты
чувствительности для типовых
источников нейтронного
излучения различных энергий
при измерении плотности потока

Источник n-излучения	<i>БДКН-</i> 03
Тепловые, Ен=0,025 эВ	0,0064±0,0013
Ra-Be, Ен=100 кэВ	0,182±0,018
²⁵² Сf, Ен=2,13 МэВ	1,01±0,10
Ри-Ве, Ен=4,16 МэВ	1,0

Элемент управления и индикации	БОИ2 [Исполнение 1]	БОИ4 [Исполнение 2]
Вид регистрируемого излучения	гамма-излучение	гамма-излучение
Детектор	счетчик Гейгера-Мюллера	счетчик Гейгера-Мюллера
Диапазон энергий	60 кэB – 3 МэB	60 кэB – 3 МэB
Диапазон измерений мощности амбиентного эквивалента дозы	1 мк3в/ч – 10 м3в/ч	0,3 мкЗв/ч — 100 мЗв/ч
Диапазон измерения амбиентного эквивалента дозы	1 мкЗв – 1 Зв	0,15 мкЗв — 100 Зв
Энергетическая зависимость относительно энергии 662 кэВ (¹³⁷ Cs)	от -25% до +35% (в диапазоне энергий 60 кэВ – 3 МэВ)	от -25% до +35% (в диапазоне энергий 60 кэВ – 3 МэВ)
Чувствительность к гамма-излучению ¹³⁷ Cs	1,0 имп·с ⁻¹ /мкЗв·ч ⁻¹	0,33 имп·с ⁻¹ /мкЗв·ч ⁻¹
Время отклика при изменении мощности дозы (МД)	не более 2 с (при изменении МД от 10 до 100 мкЗв/ч)	не более 7 с (при изменении МД от 10 до 100 мкЗв/ч)
Предел основной относительной погрешности измерений	±20%	±20%
Степень защиты	IP64	IP64
Габаритные размеры, масса	210х88х36 мм, 0,6 кг	265х90х40 мм, 0,6 кг

Дозиметр радиометр МКС-АТ1117М: общие характеристики

Электропитание

- БД

1) от БОИ2 или БОИ4

- БОИ2, БОИ4, BT-DU4

2) от адаптера BT-DU4

1) от встроенных аккумуляторов источника питания +12В

3) источника питания 230В, 50Гц

от встроенных аккумуляторов

Время непрерывной работы не менее 24 ч (с БОИ2) не менее 8 ч (с БОИ4)

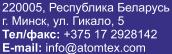
Интерфейс

подключение БД к БОИ2подключение БД к БОИ4

RS232 Bluetooth (через адаптер BT-DU4),

Диапазон рабочих температур

от -40°C до +50°C от -30°C до +50°C(БОИ4)


Относительная влажность воздуха до 95 % при ≤35°C без конденсации влаги

Дозиметр-радиометр соответствует ГОСТ 27451-87 («Средства измерений ионизиующих излучений»), нормам по безопасности: IEC 61010-1:2001 требованиям по электромагнитной совместимости: EN 55011:2009, IEC 61000-4-2:2008, IEC 61000-4-3:2008, IEC 61000-4-4:2004+A1:2010, IEC 61000-4-6:2008 Дозиметр-радиометр внесен в Государственные реестры средств измерений Республики Беларусь, Российской Федерации, Украины, Казахстана, Узбекистана, Азербайджана, Туркменистана.

Внешний вид и технические характеристики могут быть изменены

